Syndrome decoding of Reed-Muller codes and tensor decomposition over finite fields

نویسندگان

  • Swastik Kopparty
  • Aditya Potukuchi
چکیده

In this talk, we will look at decoding Reed-Muller codes beyond their minimum distance when the errors are random (i.e., in the binary symmetric channel). A recent beautiful result of Saptharishi, Shpilka and Volk showed that for binary Reed-Muller codes of length n and degree n O(1), one can correct polylog(n) random errors in poly(n) time (which is well beyond the worst-case error tolerance of O(1)). We will see two efficient algorithms as well as a different proof of the same result, where the decoding is done given the polylog(n)-bit long syndrome vector of the corrupted codeword: 1) The first is via. a connection to the well-studied ‘tensor decomposition problem’. 2) The second via. a reduction to finding all common roots of a space of low degree polynomials, which is also of independent interest. Joint work with Swastik Kopparty Organizer(s): Rutgers/DIMACS Theory of Computing

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Information sets and partial permutation decoding for codes from finite geometries

We determine information sets for the generalized Reed-Muller codes and use these to apply partial permutation decoding to codes from finite geometries over prime fields. We also obtain new bases of minimum-weight vectors for the codes of the designs of points and hyperplanes over prime fields.

متن کامل

Remarks on Codes, Spectral Transforms, and Decision Diagrams

In this paper, we discuss definitions, features, and relationships of Reed-Muller transforms, Reed-Muller codes and their generalizations to multiple-valued cases, and Reed-Muller decision diagrams. The novelty in this primarily review paper resides in putting together these concepts in the same context and providing a uniform point of view to their definition in terms of a convolutionwise mult...

متن کامل

Direct products in projective Segre codes

Let K = Fq be a finite field. We introduce a family of projective Reed-Muller-type codes called projective Segre codes. Using commutative algebra and linear algebra methods, we study their basic parameters and show that they are direct products of projective Reed-Mullertype codes. As a consequence we recover some results on projective Reed-Muller-type codes over the Segre variety and over proje...

متن کامل

Using higher-order Fourier analysis over general fields

Higher-order Fourier analysis, developed over prime fields, has been recently used in different areas of computer science, including list decoding, algorithmic decomposition and testing. We extend the tools of higher-order Fourier analysis to analyze functions over general fields. Using these new tools, we revisit the results in the above areas. (i) For any fixed finite field K, we show that th...

متن کامل

Soft-decision decoding of Reed-Muller codes as generalized multiple concatenated codes

In this paper, we present a new soft-decision decoding algorithm for Reed-Muller codes. It is based on the GMC decoding algorithm proposed by Schnabl and Bossert [1] which interprets Reed-Muller codes as generalized multiple concatenated codes. We extend the GMC algorithm to list-decoding (L-GMC). As a result, a SDML decoding algorithm for the first order Reed-Muller codes is obtained. Moreover...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018